3 research outputs found

    HPC Enhanced Large Urban Area Evacuation Simulations with Vision based Autonomously Navigating Multi Agents

    Get PDF
    AbstractAn evacuation simulation code based on Multi Agent Systems (MAS), with moderately complex agents in 2D grid envi- ronments, is developed. The main objective of this code is to estimate the effectiveness of the measures taken to smoothen and speedup the evacuation process of a large urban area, in time critical events like tsunami. A vision based autonomous navigation algorithm, which enables the agents to move through an urban environment and reach a far visible destination, is implemented. This simple algorithm enables a visitor agent to navigate through urban area and reach a destination which is several kilometers away. The navigation algorithm is verified comparing the simulated evacuation time and the paths taken by individual agents with those of theoretical. Further, a parallel computing extension is developed for studying mass evacuation of large areas; vision based autonomous navigation is computationally intensive. Several strategies like communication hiding, dynamic load balancing, etc. are implemented to attain high parallel scalability. Preliminary tests on the K-computer attained strong scalability above 94% at least up to 2048 CPU cores, with 2 million agents

    Workplace Testing

    No full text
    corecore